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Abstract—The ability to explain in understandable terms, why
a machine learning model makes a certain prediction is becoming
immensely important, as it ensures trust and transparency in
the decision process of the model. Complex models, such as
ensemble or deep learning models, are hard to interpret. Various
methods have been proposed that deal with this matter. Shapley
values provide accurate explanations, as they assign each feature
an importance value for a particular prediction. However, the
exponential complexity of their calculation is dealt efficiently
only in decision tree-based models. Another method is surrogate
models, which emulate a black-box model’s behavior and provide
explanations effortlessly, since they are constructed to be inter-
pretable. Surrogate models are model-agnostic, but they produce
only approximate explanations, which cannot always be trusted.
We propose a method that combines these two approaches, so
that we can take advantage of the model-agnostic part of the
surrogate models, as well as the explanatory power of the Shapley
values. We introduce a new metric, TopjSimilarity, that measures
the similitude of two given explanations, produced by Shapley
values, in order to evaluate our work. Finally, we recommend
ways on how this method could be improved further.

Index Terms—Machine learning, interpretability, explanations,
FATML, XAI, transparency, Shapley values, Surrogate

I. INTRODUCTION

Interpretability [1] of machine learning models is a com-

plex and evolving topic. Understanding why a model formed

a certain prediction is crucial for achieving trust, fairness,

accountability and transparency. Many machine learning al-

gorithms, such as deep neural networks (DNNs), gradient-

boosted methods and random forests, are treated as “black

box” models because of their intricate structure. Their com-

plexity may lead to high accuracy scores but also to low-

interpretability, which is usually a fundamental trade-off in

machine learning. Understanding the decisions of a model

regardless of its accuracy is important, and in some cases

critical (e.g., in medical diagnosis, when an action is depended

on a model’s prediction). Furthermore, people desire to know

how automated decisions are being made for them. This is

highlighted even more with the latest EU General Data Protec-

tion Regulation (GDPR), which gives users the right to ask for

an explanation of an algorithmic decision concerning them [2].

Interpretability can discover bias (e.g, racial bias against black

inmates [3]) and promote fairness, and has already become

a necessary component in many machine learning systems,

such as in banking (reason codes for loan disapproval) [4],

insurance, healthcare [5] and many other industries. More-

over, intepretability offers accountability, transparency and can

diagnose ill-conditioned systems, which otherwise would be

considered accurate and precise. For example in [6], artificially

produced images that make no sense to humans, are labeled

by state-of-the-art DNNs as recognizable objects with high

confidence (99.99%). Classifying a white-noise image as an

animal may not seem that serious, but it becomes critical when

people can use these vulnerabilities for malicious hacking

(e.g., a terrorist tricking an airport’s security scanning system

or a self-driving car not recognising an altered stop sign [7]).

A common way to explain a prediction is through feature

importance, which is to calculate the contribution of each

feature to the prediction of the model. A basic categorization of

interpretability methods is whether the model to be explained

is known or not. A model-agnostic method does not require

any knowledge of the inner workings of the black box model,

only access to the data and the predictions of the model

is necessary, in contrast to model specific methods, which

are applicable only for a single type of algorithm. Another

distinction is whether explaining a single instance, consisting

local interpretability, or explaining the whole model in a

holistic view, leading to global interpretability [8].

A well-known interpretability method is Shapley explana-

tions [9], where the features of a machine learning problem

are treated as players in a coalitional game from Game Theory.

A specific value called Shapley value, is assigned to each

feature and demonstrates its contribution to the result. While

Shapley values produce high quality explanations, their exact

computation can be implemented efficiently only in decision

tree-based models, using the Tree SHAP algorithm from [10],

[11].

Another straightforward and intuitive approach is the cre-

ation of surrogate models, which are interpretable models

trained to approximate the predictions of a black box model.

Explanations are derived effortlessly from the surrogate, since

it is chosen to be interpretable, in a model-agnostic way. The

fidelity (distance between the black box’s and the surrogate

model’s predictions) and the interpretability (ease at producing

explanations) of the surrogate model are hard to be satisfied

simultaneously. In the general case, high-fidelity leads to low-

interpretability and vice versa. For this reason, the surrogate

models are usually interpretable models but with low-fidelity,

so their explanations are not accurate [11].

Our method combines these two approaches, by creating an



XGBoost [12] surrogate model and then extracting the Shapley

explanations. In our case, the complexity of the surrogate

model is irrelevant, since the explanations will be derived

by Tree SHAP. Therefore, we can achieve high-fidelity and

high-interpretability, by exploiting the advantages of the two

methods individually. Our method is model-agnostic, since it

requires only access to the data and the predictions of the

original model.

The correctness of this method relies on the similarity

between the explanations of the original model and the sur-

rogate model. To evaluate this, we introduce a new metric

called TopjSimilarity, which calculates the distance of the two

explanations. The results of our experiments show that we can

achieve high similarity in some cases, but in the general case

this depends on the structure of the dataset. In future work, we

propose with optimism that a different approach on building

the surrogate model could lead to high similarity, regardless

of the structure of the dataset.

II. BACKGROUND WORK

A. Shapley Value method - Tree SHAP

SHAP (SHapley Additive exPlanations) [10] is a unified

framework for interpreting predictions and it is based on the

Shapley regression values [13] from cooperative game theory.

SHAP assigns each feature an importance value for a particular

prediction to compute the explanation. This value is the unified

measure of additive feature attributions and is called SHAP

value, φi ∈ R. The formula for φi is:

φi =
∑

S∈F\{i}

|S|!(M − |S| − 1)!

M !
[fS∪{i}(xS∪{i})− fS(xS)]

(1)

where F is the set of input features, S is a subset of input

features and M = |F | is the number of input features. This

formula computes the gravity of each feature by calculating

its importance when it is present in the prediction and then

subtracting it when it is not present.

• fS∪{i}(xS∪{i}) : is the output when the ith feature is

present

• fS(xS): is the output when the ith feature is withheld

•
∑

S∈F\{i}

|S|!(M − |S| − 1)!

M !
: is the weighted average

of all possible subsets of S in F

The SHAP value is the only explanation method with a

solid theory (since 1950) and being the only possible locally

accurate and consistent feature contribution values [9], they

can produce high-quality explanations (both local and global).

There are various approaches of approximating the SHAP

values: model-agnostic (Shapley sampling values and Kernel

SHAP) and model-specific (Max SHAP, Deep SHAP). How-

ever, the most novel method is Tree SHAP, which implements

an exact computation of Shapley explanations (SHAP values),

which works by leveraging decision trees structures to dis-

aggregate the contribution of each input in a decision tree

or decision tree ensemble model. Given a number of trees

Original Model Surrogate Model
X,y y' X,y' y''

Fig. 1: Overview of the surrogate model method

T , L being the maximum number of leaves in any tree and

M being the number of features, the complexity of equation

1 is O(TL2M ). In [10] for balanced trees, where the depth

becomes D = logL, the Tree SHAP algorithm has complexity

O(TLD2), which reduces the computational complexity from

exponential to low-order polynomial for trees and sums of

trees. The other methods are slower approximate methods.

The Tree SHAP method takes as input a trained model

(currently works only for XGBoost [12], LightGBM [14],

CATBoost [15] or Scikit-learn’s [16] decision tree models)

alongside with input data X (N ×M matrix of N instances

and M features) and produces an N × M matrix with the

SHAP values. Each value represents the impact (positive

or negative) of the feature to the corresponding instance.

Local interpretability can be accomplished by extracting those

features for a specific instance with the highest absolute

SHAP value and demonstrating the amount of their positive or

negative influence. Global interpretability can be achieved by

aggregating the SHAP values across the instances. The Python

package of Tree SHAP [10] provides tools that implement

graphs of local and global explanations, as well as dependency

plots and interaction value dependency plots. Nonetheless,

custom explanation methods can be constructed that fit the

needs of a given task.

B. Surrogate Model method

A surrogate is an interpretable model that is used to explain

a complex black box model. It is created by training usually

a much simpler model (e.g, shallow-depth decision tree) with

original input data X and predictions y′ of the original model

(“Fig. 1”). Fidelity can be measured through the R2 metric

between the predictions of the surrogate model and the original

model.

The produced model can be viewed as an approximated flow

chart description of the original model. Surrogate models are

model-agnostic and enable some primary deductions about the

most important features and interactions of the complex model,

especially when combined with Partial Dependence (PD) [17],

[18] and Individual Conditional Expectation (ICE) charts [19].

However, the simplicity required to make the model explain-

able contrasts the need of fidelity. Fidelity and interpretability

share a disproportional relationship, so this method has certain

limitations. To ensure good fidelity, a more complex model is

necessary. Nevertheless, a complex model is difficult to be

explained. Our goal is to overcome this trade-off and achieve

high-fidelity as well as high-interpretability.

The process of creating a surrogate model is also known as

model extraction. In [20] the TREPAN algorithm and in [21]

the DeepRed algorithm extract a decision tree from trained

neural networks. Similar work is found in [22] and [23], where

deep neural networks are reverse-engineered. In [24], although



the goal here is not interpretability, it is demonstrated that the

models of ML-as-a-service systems (e.g., BigMl, Amazon) can

be replicated with high-fidelity. In a more recent work, the

model-agnostic method described in [25] induces a decision

tree from a black box model by actively sampling new training

points to avoid overfitting and is used for interpretability pur-

poses. Finally, similar work can also be found in engineering,

where a surrogate model can replace a complex and costly

simulation model (e.g., shape for an aircraft wing and airflow

around it).

C. Related Work

A well-known interpretability method is LIME (Local Inter-

pretable Model-Agnostic Explanations) [26]. LIME is model-

agnostic and works by perturbing the original data and then

observing how this affects the predictions. Perturbation for

example can be extracting words from text or hiding parts

from an image (i.e., creating ‘superpixels’). The processed

data then are fed to an interpretable model thus generating

an explanation by approximating the original model with a

simpler one. Another aspect of LIME is that it is implemented

locally, in the neighbourhood of the prediction to be explained.

In more recent work, the creators of LIME have released a

novel approach to LIME, anchors [27], which generate high-

precision sets of plain-language rules to describe a machine

learning model’s prediction in terms of the model’s input

variable values. A drawback of LIME is that it can be difficult

to deploy, as its locality requires multiple implementations

in order to give a highly interpretable explanation. K-LIME

[28] is a modification of LIME, where the local regions are

constructed by K clusters or user-defined segments instead of

simulating perturbed data.

Supplementary method is Partial Dependence (PD) plots

[17], [18], which show the interactions between the target and

a feature and their effect on a prediction. Usually, they are

used together with Individual Conditional Expectation (ICE)

charts [19], which depict how an instance’s prediction changes

when a single feature changes. Moreover, Accumulated Local

Effects (ALE) plots [29], demonstrate the influence of the

features to the prediction on average and are an unbiased

alternative to PD plots, which output misleading results when

the predictors are dependent. Finally, Leave-one-covariate-out

(LOCO) variable importance [30] creates local interpretations

for each row of data, but suffers also from inaccuracy when

nonlinear dependencies exist in a model. For this reason,

Shapley explanations is a better alternative.

There are already plenty of communities with different no-

tions on this subject. FATML [31] is a group of academics that

is concerned with fairness, accountability, and transparency in

machine learning. Another prominent community is a group

of researchers funded by Defense Advanced Research Projects

Agency (DARPA) [32], a division of the American Defense

Department that investigates new technologies. They label

their work as Explainable Artificial Intelligence XAI).

There are also commercial packages that provide inter-

pretability techniques. Driverless AI [28] produced by the

Surrogate Model
X,y' xgb.model

Tree SHAP

Shapley explanations

Fig. 2: Overview of our method

company H2O.ai, employs different explanatory methods (K-

LIME, Shapley, Decision Tree Surrogate, PD, ICE and more).

IBM’s Watson OpenScale [33] platform also provides services

that deal with bias in models. Here, the inner-workings of their

explanatory methods are not available.

III. OUR METHOD: SURROGATE MODEL + TREE SHAP

An overview of our method is shown in “Fig. 2”. Firstly,

an XGBoost model is trained on input data X and the pre-

dictions y′ of the black-box model. Then, the produced model

alongside with the input data X is given to the Tree SHAP

method, which produces a matrix with the SHAP values. The

XGBoost package is chosen, as it is applicable to the Tree

SHAP method, which also has a fast-approximate implemen-

tation specifically for XGBoost models. Our aim is obtaining

high-interpretability and high-fidelity simultaneously. High-

interpretability is accomplished just by using Shapley explana-

tions. For high-fidelity, our approach is overfitting the data into

the surrogate model. The main idea is that by overfitting the

data, we obtain almost perfect accuracy, which means that we

can explain every instance of the dataset. The trained surrogate

model of our method makes the same (99.99%) predictions as

the original model. Therefore, the produced SHAP values of

the next step will have actual meaning, since if the prediction

of the surrogate model was wrong (i.e., not the same as the

original model’s prediction), then the explanation would be

pointless.

This method is model-agnostic as it requires as input only

the dataset X and the predictions of the black-box model

y′. The “King County Housing, USA” [34] dataset contains

structured data about houses in King County, Washington

and the prediction target is the housing price. “Fig. 3, 4”

demonstrate the global and local explanations derived by our

method. The original model was a k-Nearest-Neighbors model,

which cannot be explained directly by the Tree SHAP method.

In “Fig. 3” we can see that the size of a house’s living room

(sqft living) is the most important factor for predicting the

pricing of the house. The higher the SHAP value of a feature,

the higher its contributions is to the deducted decision. Every

house in the dataset is run through the model and a dot is

created for each individual SHAP value. Dots are colored

by the feature’s value of that house and pile up vertically

to show density. “Fig. 4” shows the most important feature

for the least expensive house (75.000$) is sqft living=670,

followed by yr built=1966 (year the house was constructed),

sqft above=670 (total square footage minus square footage of

the basement) and bathrooms=0 (number of bathrooms).

Attempts were made also on unstructured data (MNIST

dataset). Although explanations were successfully extracted

using our method, more experiments are needed in order to

test the scalability of our process.



Fig. 3: Global Interpretation: Summary plot

Fig. 4: Local Interpretation: Force plot

IV. EVALUATION

A. Metric: TopjSimilarity

The fact that the surrogate model takes almost the same

decisions as the original model does not necessary imply

that the decision process of the two models is the same.

By decision process, we mean the features that the model

relied on in order to make a prediction. In a decision tree, a

decision process is the path from the root of the tree to a leaf

containing the features in each node. For example, in the “King

County Housing” dataset a decision tree-based model may

predict a price of 100.000$ and its surrogate predicts 100.001$.

However, the original model might have used a decision path

different than the surrogate’s path, although the predicted price

is almost the same. Therefore, the explanation by the surrogate

model will be not fully trustworthy. The decision process is

more difficult to pinpoint in more complex models, such as

Deep Neural Networks, but the problem remains the same.

This uncertainty needs to be cleared, since it questions

the trust on the explanations of our model. To evaluate the

quality of our explanations, we propose a new metric called

TopjSimilarity, which measures the similarity between the

original and the surrogate model. The main idea (“Fig. 5”) is to

train as original models, models that Tree SHAP is applicable

and derive their SHAP values. Then we calculate the surrogate

model’s SHAP values and we compare them with the original

SHAP values. The comparison is based on the order of the

most important features. We order by absolute value the SHAP

values from the two models for each instance and we place the

j top features in sets ORIGj and SURj . Array common is

created as follows: commoni = ORIGj(i) ∩ SURj(i), ∀i ∈
N , where N is the number of instances. Finally, the formula

Surrogate Model Tree SHAP

Shapley explanations

Original Model Tree SHAP

Shapley explanations

TopjSimilarity

Fig. 5: Overview of the method calculating the TopjSimilarity metric
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Fig. 6: Mean SHAP value for each column of the absolute
ordered Shapley matrix

for the proposed metric is:

TopjSimilarity =
avg(common)

j
(2)

For instance, Top1Similarity = 80% means that the two models

agree on the most important feature for the 80% of the

instances. The range of j depends on the distribution of the

SHAP values. Usually for a dataset of 10-20 features, the

Top-5 features are the most contributive. “Fig. 6” shows the

distribution of the SHAP values, after each row of the Shapley

matrix has been ordered by their absolute value and then the

average of each column was calculated (from the standard

UCI Adult Income [35] dataset on a LightGBM model). The

appropriate range of j can be decided by examining this

diagram.

B. Experiments - Results

To evaluate out method we experimented on 4 datasets

described in “TABLE I”.

The format of the process is:

1) Train original model, calculate metrics (R2, RMSE,

MAE) and get SHAP values

2) Train surrogate model, calculate metrics (R2, RMSE,

MAE) and get SHAP values

3) Find TopjSimilarity for j ∈ [1, 8]

CATBoost, LightGBM, XGBoost and Scikit-learn’s decision

tree models were used as original models and XGBoost as

surrogate. Moreover, for some experiments the original models



Experiment #instances #features Target

UCI Adult income 32561 12 predict probability of an individual making over $50K a year in annual income
House Sales in King County, USA 21613 12 predict the price of a house in King County, USA
OpenML Elevators [36] 16599 16 predict an action taken on the elevators of a F16 aircraft
Default of Credit Card Clients [37] 30000 23 predict if credit card customer will default on credit card bill

TABLE I: Overview of the datasets used in the experiments

Experiment Setup Train/Test split Whole dataset K-Fold(1st) K-Fold(2nd) K-Fold(3rd) K-Fold(4th) K-Fold(5th)

Top1Similarity 74.85 79.44 77.43 79.58 80.27 79.99 80.61

TABLE II: Different Top1Similarities by surrogate models trained on different parts of the dataset

Experiments
40

50

60

70

80

90

Topj Similarities
Top1 Sim.
Top3 Sim.
Top5 Sim.

Fig. 7: Top1, Top3 and Top5 Similarities for all 18 experiments

were trained more than once and were tuned appropriately in

order to get a different R2 metric each time. For example,

in the House Sales in King County, USA dataset the original

model using Scikit’s-learn decision tree was trained three times

with an R2 value each time of 75%, 81% and 93%. This

was done in order to increase diversity in the original model

selection. Altogether 18 experiments were performed using

these four datasets with different original models and different

initial tunings.

The Similarity metric can be viewed as the percentage

of confidence in the explanations of the surrogate model.

Top5Similarity = 80% means that the explanations of the

surrogate model are on average 80% accurate. The boundary

line between a good and a bad similarity is rather subjective,

but intuitively we can say that for a model containing more

or less 20 features having TopjSimilarity values for j ∈ [1, 5]
of more than 80% is acceptable.

The results in “Fig. 7” demonstrate some encouraging

Similarities, but there is no consistency across all experiments.

Similarity was treated as accuracy in a typical supervised

learning problem, in a sense that the tuning of the surrogate

model was adjusted each time to achieve a higher Similarity

value. The most negative aspect of our method is that we

have not find a way to know a priori, if the trained surrogate

model will have a good Similarity or not. The R2, RMSE and

MAE metrics are not linked with Similarity, so its quality is

determined only after it has been calculated. We used overfit-

ting in our advantage, as it enables the explanation of every

instance, but it turns out that it infringes the similitude between

the decision process of the original and the surrogate model.

Other approaches were implemented to decrease the effect

of overfitting but still achieving high-fidelity (R2 > 99%).

One method was using train/test splits. Another was adding

artificial data created by the Imbalanced-learn [38] library

(with oversampling, undersampling and a combination of these

two methods) to deal with unbalanced datasets. Finally, the

k-fold cross-validation technique was used, by implementing

our method on the data of each random fold. The Similarity

of each fold was different and in some cases was much

better than all the other approaches overall. This is maybe an

insight that a thorough selection of input data for the surrogate

model may lead to a better Similarity consistently. “TABLE

II” demonstrates this effect: a LightGBM model was trained

as an original model on the “UCI Adult income” dataset and

3 methods were implemented to produce the surrogate model,

using train/test split, overfitting model on the whole dataset

and training the model on 5 random folds, produced by the

K-Fold method. We can see that the last fold of the K-Fold

method, produced the best Top1Similarity. Overall, the results

from all experiments were produced either by overfitting the

whole dataset on the surrogate or by one of the previous

alternative methods.

Lastly, the complexity of our method depends mainly only

on the value of the parameter max-depth of the ensemble

trees by the XGBoost model, since the Tree SHAP com-

plexity is O(TLD2) and the training of the surrogate with

overfitting is relatively fast. Usually a value between 2 and 9

is enough to produce high-fidelity surrogate models. Taking

into consideration that Tree SHAP has a fast-approximate

implementation specifically for XGBoost models, the overall

process is computationally fast.



V. CONCLUSIONS AND FUTURE WORK

A strong aspect of our method is that it is model-agnostic.

It requires only access to the data and the prediction of

the original function, without knowing any details about the

predictive model. We showed that it can produce high quality

explanations, using the the SHAP values in an efficient way.

The experiments did not provide a consistent conclusion about

the similarity between the explanations of the original and

the surrogate model. However, they gave an insight on how

this problem could be fixed. Creating a custom surrogate

model as described in [25] and combining with techniques

from [20], [21], [23], [24] could possibly lead to a surrogate

that is simultaneously highly interpretable and an accurate

replica of the original. Realizing that the complexity and the

interpretability of the surrogate model is irrelevant, as the

explanations will be derived by the SHAP values, can solve

the current problem that the surrogate model approaches have,

which is this trade-off between interpretability and fidelity.

Moreover, we have introduced a new metric, TopjSimilarity,

that we believe is indicative measure of the distance between

explanations. This metric can be used to test the similitude

of tree-based models. An alternative to calculating multiple

TopjSimilarities could be combining them in one linear rela-

tionship, with weights derived by the diagram in “Fig. 5”.

Future work will include the construction of a custom

surrogate tree-based model, with focus on fidelity, as well as

a modification of the Tree SHAP algorithm in order to be

applicable to the new custom tree model. We are optimistic

that this proposed model-agnostic method can be a powerful

and flexible approach in this immensely developing area of

interpretability of machine learning models.
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